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We have sought to work with an approach to Noether symmetry analysis which uses
the properties of infinitesimal point transformations in the space-time (q, t) variable
to establish the association between symmetries and conservation laws of a dynamical
system. In this approach symmetries are expressed in the form of generators. We have
studied the variational or Noether symmetries of two uncoupled Harmonic oscillators
and two such oscillators coupled by an interaction. Both these systems can have alterna-
tive Lagrangian representations. We have studied in detail how the association between
symmetries and conservation laws changes as one alters the analytic or Lagrangian
representation. This analysis is carried out with a view to explicitly demonstrate that
the correlation between symmetry transformation and corresponding invariant quantity
depends crucially on the choice of the analytic representation.
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1. INTRODUCTION

In the simplest problem of variational calculus one attempts to find a path
E = E0 in the velocity-phase space along which the action functional

W (E) =
∫ t2

t1

L (q, q̇, t) dt (1)

is an extremum. By the term velocity-phase space we mean the space (q, q̇)
where q is a generalized coordinate and q̇ = dq

dt
, the generalized velocity. In the

newtonian context, the functions L (q, q̇, t) are of at least class E4 in a region
R2n+1 and are often called the admissible Lagrangians (Santilli, 1978). We note
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that the real-valued functions Fi are of class Em in a region R3n+1 when they posses
continuous partial derivatives (with respect to the arguments) upto and including
the order m everywhere in R3n+1.

Two admissible Lagrangians are called equivalent iff they are proportional
to and/or differ by a guage function. Otherwise, they are called alternative or
inequivalent. Evolution of many natural processes admits alternative Lagrangian
representations. Interestingly, description of physical systems using alternative
Lagrangians can have deep consequences on the further devlopement of the theory.
For example, one can come across ambiguities in the association of symmetries
with constants of the motion (Morandi et al., 1990). It is well known that such
association is provided by Noether’s theorem. The object of the present work is to
envisage an in-depth study for the relation between symmetries and conservation
laws of newtonian systems which can be analytically represented by alternative
Lagrangians. We shall express the symmetries in the form of generators and
construct the concommitant constants of the motion. We shall also try to interpret
our results in physical terms.

In the classical Noether theorem, if a given system of differential equations
follows from the variational principle, then a continuous symmetry transformation
(point, contact or higher order) that leaves the action functional invariant to within
a divergence yields a conservation law. The proof of this theorem requires some
knowledge of differential form, Lie derivatives and pull-back (Olver, 1993). Use of
similar sophisticated mathematical tools is also required to study the ambiguities
in the association of symmetries with constants of the motion. In particular, one
needs to work with the geometry of the tangent bundle over a differential manifold
(Morandi et al., 1990). In our work we shall, however, carry out the symme-
try analysis by using a relatively simpler mathematical framework as compared
to that of the algebro-geometric theories (Morandi et al., 1990; Olver, 1993).
In fact, we shall make use of some point transformations that depend on time
and spatial coordinates. The approach to be followed by us has an old root in the
classical-mechanics literature. For example, as early as 1951, Hill (1951) provided
a simplified account of Noether’s theory by considering infinitesimal transforma-
tions of the dependent and independent variables of the particle dynamics or field
theory. In the recent past Struckmeier and Riedel (2002) used a similar approach
to study the Noether and Lie symmetries for the time-dependent Kepler problem.
An obvious virtue of their approach is its simplicity and directness. We shall study
the relation between symmetries and conservation laws with special emphasis
on (i) two uncoupled Harmonic oscillators and (ii) Harmonic oscillators coupled
by an interaction. The equations of motion of these systems can have alternative
Lagrangian representations. We are primarily interested to examine how does the
association between symmetries and conservation laws change as we go from one
Lagrangian representation to the other.
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In Section 2 we present the results for the Lagrangians and corresponding
Hamiltonians. We outline in Section 3 our scheme for symmetry analysis by the
use of Noether’s theorem. We devote Sections 4 and 5 to present the main results
of this work for the relation between symmetries and conservation laws in the
presence of alternative Lagrangians. Our results also include the generators of the
symmetry transformations together with the algebra satisfied by them. Moreover,
we present all appropriate results for constants of the motion. Finally, in Section
6, we summarize our outlook on the present work.

2. ANALYTIC REPRESENTATIONS IN CONFIGURATION – AND
PHASE SPACE

The representation of physical systems in terms of Lagrangians and Hamil-
tonians often goes by the name analytic representation (Santilli, 1978). Here we
shall construct analytic representations for the systems in (i) and (ii) with a view
to use them for symmetry analysis. First we consider the uncoupled oscillators
represented by

q̈1 + ω2q1 = 0 (2a)

and

q̈2 + ω2q2 = 0 (2b)

with ω, the eigenfrequency of the identical system in (2). Here qi stand for the
generalized coordinates and overdots denote differentiation with respect to time.
It is easy to see that (2) can be analytically represented in the configuration space
by using the alternative Lagrangians

Ld = 1

2

(
q̇2

1 + q̇2
2

) − 1

2
ω2

(
q2

1 + q2
2

)
(3a)

and

La = q̇1q̇2 − ω2q1q2. (3b)

We have used the superscripts d and a on L to denote direct and alternative
representations presumably because Ld when substituted in the Euler-Lagrange
equation in q1 or q2 gives the equation of motion for q1 or q2 while La does the
opposite. The Euler-Lagrange equation in q1 gives the equation of motion for q2

and the conversly. The Lagrangians Ld and La are not connected by a gauge term
such that the results in (3) refer to the alternative Lagrangians of the uncoupled
oscillators in (2). The Hamiltonians for the Lagrangians in (3a) and (3b) are given
by

Hd = 1

2

(
pd

1
2 + pd

2
2
)

+ 1

2
ω2

(
q2

1 + q2
2

)
(4a)
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and

Ha = pa
1pa

2 + ω2q1q2. (4b)

with the canonical momenta pd
1 = q̇1, pd

2 = q̇2, pa
1 = q̇2 and pa

2 = q̇1.

The second system of our interest consists of two one dimensional harmonic
oscillators coupled by an interaction −αq1q2, with α, the coupling constant. The
equations of motion are (Landau and Lifshitz, 1982)

q̈1 + ω2q1 = αq2 (5a)

and

q̈2 + ω2q2 = αq1. (5b)

As with the equations in (3) the alternative Lagrangians representing (5) can be
written as

Ld = 1

2

(
q̇2

1 + q̇2
2

) − 1

2
ω2

(
q2

1 + q2
2

) + αq1q2 (6a)

and

La = q̇1q̇2 − ω2q1q2 + α

2

(
q2

1 + q2
2

)
. (6b)

The corresponding Hamiltonians are given by

Hd = 1

2

(
pd

1
2 + pd

2
2
)

+ 1

2
ω2

(
q2

1 + q2
2

) − αq1q2 (7a)

and

Ha = pa
1pa

2 + ω2q1q2 − α

2

(
q2

1 + q2
2

)
. (7b)

3. SYMMETRIES AND CONSERVATION LAWS

We shall study the infinitesimal criterion for the invariance of a variational
problem under a group of transformations that map ‘points’ in configuration space
(�q, t) into their infinitesimal neighbourhood (�q ′, t ′). Here �q = {qi}, i = 1, . . . , n,

stands for the set of generalized coordinates representing the dynamical system
under consideration and, as usual, t is the time parameter. Formally, such point
transformations are represented as

t ′ = t + δt, δt = εξ (�q, t), (8a)

qi
′ = qi + δqi, δqi = εηi(�q, t) (8b)
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with ε, an infinitesimal parameter. Given the transformation rule for qi , the corre-
sponding results for q̇i and q̈i are given by Struckmeier and Riedel (2002)

δq̇i = ε
[
η̇i(�q, t) − ξ̇ (�q, t)q̇i

]
(9)

and

δq̈i = ε
[
η̈i(�q, t) − 2ξ̇ (�q, t)q̈i − ξ̈ (�q, t)q̇i

]
. (10)

Considering the variation of an arbitrary analytic function u(�q, t) it is easy to
prove that

δu = εUu(�q, t) (11)

with

U = ξ (�q, t)
∂

∂t
+

n∑
i=1

ηi(�q, t)
∂

∂qi

. (12)

The operator U is the generator of the infinitesimal point transformations in (8)
and represents a vector field on (�q, t) since it assigns a tangent vector to each
points within (�q, t). A similar cosideration applied to v(�q, �̇q, t) gives

δv = εU (1)v(�q, �̇q, t) (13)

with

U (1) = U +
n∑

i=1

(
η̇i(�q, t) − ξ̇ (�q, t)q̇i

) ∂

∂q̇i

. (14)

The presence of ∂
∂q̇i

in (14) clearly shows that U (1) is the first prolongation (Olver,
1993) of U .

To write the Noether’s theorem we consider, among the general set of point
transformations defined by (8), only those that leave the action Ldt invariant. In
other words, we demand that

L(�qi, �̇qi, t)
!= L′(�q ′

i , �̇q ′
i , t

′). (15)

In order to satisfy the condition in (15), we allow the Lagrangian to change its
functional form (L → L′). The functional relation between L′ and L may be
expressed by introducing a gauge function f (�q, t) (Hill, 1951; Struckmeier and
Riedel, 2002) such that

L′(�q ′
i , �̇qi

′
, t ′) = L(�q ′

i , �̇qi

′
, t ′) − ε

df (�q, t)

dt
. (16)

From (15) and (16) we have

L(�q ′
i , �̇qi

′
, t ′) dt ′ = L(�qi, �̇qi, t) dt + ε

df (�q, t)

dt
dt. (17)
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On the other hand using L for v in (13) we have

L(�q ′
i , �̇qi

′
, t ′) = L(�qi, �̇qi, t) + εU (1)L(�qi, �̇qi, t). (18)

From (17) and (18) it is easy to see that

df (�q, t)

dt
= ξ̇L + ξ

∂L

∂t
+

n∑
i=1

(
ηi

∂L

∂qi

+ (
η̇i − ξ̇ q̇i

) ∂L

∂q̇i

)
. (19)

In writing (19) we have made use of the results in (12) and (14). We, therefore, infer
that the action is invariant under those point transformations whose constituents ξ

and ηi satisfy (19). The terms in (19) can be rearranged to write

dI

dt
+

n∑
i=1

(ξ q̇i − ηi)

(
∂L

∂qi

− d

dt

∂L

∂q̇i

)
= 0 (20)

with

I =
n∑

i=1

(ξ q̇i − ηi)
∂L

∂q̇i

− ξL + f (�q, t). (21)

Along the trajectory of the system, the Euler-Lagrange equations hold good such
that the second term in (20) is zero. Thus I given in (21) is a conserved quantity or
a constant of the motion. The invariant given in (21) and the differential equations
for the gauge function in (19) is commonly known as the Noether theorem.

In the Hamiltonian formulation of classical mechanics the noether’s invariant
can be written as

I = ξ (�q, t)H (�q, �p, t) −
n∑

i=1

ηi(�q, t)pi + f (�q, t). (22)

We have obtained (22) form (21) using the relation between H and L as given by
the usual Legendre transformation

L(�q, �̇q, t) =
n∑

i=1

piq̇i − H (�q, �p, t), pi = ∂L

∂q̇i

. (23)

In terms of the Hamiltonian the differential equation (19) now reads

d

dt

[
ξ (�q, t)H (�q, �p, t) −

n∑
i=1

ηi(�q, t)pi + f (�q, t)

]
= 0. (24)

Clearly, the expression inside the squared bracket in (24) stands for the conserved
quantity given in (22). Equation (24) provides a natural basis to carry out Noether
symmetry analysis for Newtonian systems.
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4. NOETHER SYMMETRIES OF UNCOUPLED HARMONIC
OSCILLATORS

4.1. Direct Representation

We first perform the Noether symmetry analysis for the uncoupled Harmonic
oscillators represented by (2a) and (2b). Two alternative Lagrangians for the system
are given in (3a) and (3b) with the corresponding Hamiltonians being represented
by (4a) and (4b) respectively. The superscripts used in these equations are not
essential to carry out the analysis. Thus we shall omit them henceforth. For the
direct Hamiltonian in (4a), (24) can be written in the form

∂f

∂t
+ p1

∂f

∂q1
+ p2

∂f

∂q2

+ 1

2

(
∂ξ

∂t
+ p1

∂ξ

∂q1
+ p2

∂ξ

∂q2

) (
p2

1 + p2
2 + ω2q2

1 + ω2q2
2

)

−
(

∂η1

∂t
+ p1

∂η1

∂q1
+ p2

∂η1

∂q2

)
p1 + ω2η1q1

−
(

∂η2

∂t
+ p1

∂η2

∂q1
+ p2

∂η2

∂q2

)
p2 + ω2η2q2 = 0. (25)

In writing (25) we have made use of the canonical equations

q̇1 = ∂H

∂p1
= p1, ṗ1 = −∂H

∂q1
= −ω2q1 (26a)

and

q̇2 = ∂H

∂p2
= p2, ṗ2 = −∂H

∂q2
= −ω2q2. (26b)

Equation (25) can be globally satisfied for any particular choice of the momenta
provided the sum of momentum-independent terms, the coefficients of linear,
quadratic and cubic terms in p1 and p2 vanish separately. Following this viewpoint
we write

p0
1,2 :

∂f

∂t
+ ω2

2

(
q2

1 + q2
2

) ∂ξ

∂t
+ ω2η1q1 + ω2η2q2 = 0, (27a)

p1 :
∂f

∂q1
+ ω2

2

(
q2

1 + q2
2

) ∂ξ

∂q1
− ∂η1

∂t
= 0, (27b)

p2 :
∂f

∂q2
+ ω2

2

(
q2

1 + q2
2

) ∂ξ

∂q2
− ∂η2

∂t
= 0, (27c)
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p2
1 :

1

2

∂ξ

∂t
− ∂η1

∂q1
= 0, (27d)

p2
2 :

1

2

∂ξ

∂t
− ∂η2

∂q2
= 0, (27e)

p1p2 : −∂η1

∂q2
− ∂η2

∂q1
= 0, (27f)

p1p
2
2 :

1

2

∂ξ

∂q1
= 0, (27g)

p2p
2
1 :

1

2

∂ξ

∂q2
= 0, (27h)

p3
1 :

1

2

∂ξ

∂q1
= 0 (27i)

and

p3
2 :

1

2

∂ξ

∂q2
= 0. (27j)

Equation (27a) signifies that we have equated the sum of p-independent terms to
zero while (27b)–(27j) have been obtained by equating the sum of the coefficients
of p1, p2, p2

1 etc to zero. From (27g)–(27j) we see that ξ is not function of q1 and
q2 . Thus

ξ (q1, q2, t) ≡ ξ (t) = β(t) (say). (28)

Sum of (27d), (27e) and (27f) can be written in a compact form

2∑
i=1

2∑
j=1

(
1

2
δij

∂ξ

∂t
− ∂ηi

∂qj

)
= 0. (29)

Equation (29) will be satisfied globally if ∂ηi

∂qj
cancels the term 1

2δij ξ̇ up to a
constant element aij of an antisymmetric matrix (aij ) such that

∂ηi

∂qj

= 1

2
δij β̇(t) + aij aij = −aji . (30)

In writing (30) we have made use of (28). Equation (30) can be integrated to get

ηi(�q, t) = 1

2
β̇qi + ψi(t) +

2∑
j=1

aij qj , (31)



Noether-Symmetry Analysis Using Alternative Lagrangian Representations 1237

where ψi(t) is a constant of integration. In view of (28), we can write (27a), (27b)
and (27c) as

∂f

∂t
+ ω2

2

(
q2

1 + q2
2

)
β̇ + ω2η1q1 + ω2η2q2 = 0, (32)

∂f

∂q1
− ∂η1

∂t
= 0 (33)

and

∂f

∂q2
− ∂η2

∂t
= 0. (34)

For ηi(�q, t) in (31), we see that

f = 1

4
q2

1 β̈ + 1

4
q2

2 β̈ + ψ̇1q1 + ψ̇2q2 (35)

represents a general solution of (33) and (34). Using the expressions for ηi and f

from (31) and (35) in (22) we obtain the invariant I in the form

I = Iβ + Iψ1 + Iψ2 + Ia, (36)

where

Iβ = 1

4

(
q2

1 + q2
2

)
β̈ − 1

2
(q1p1 + q2p2) β̇

+1

2

(
p2

1 + p2
2 + ω2q2

1 + ω2q2
2

)
β, (37a)

Iψi
= ψ̇iqi − ψipi, i = 1, 2 (37b)

and

Ia = −a12q2p1 − a21q1p2. (37c)

In writing (36) we also used (4a) and (28). Each of the I ’s in (37) is expected to
form a separate constant. This can be seen as follows.

Substituting the values of ηi and f in (32) we get

Jβ + Jψ1 + Jψ2 + Ja = 0, (38)

where

Jβ = (
q2

1 + q2
2

) (
1

4

...

β +ω2β̇

)
, (39a)

Jψi
= (

ψ̈i + ω2ψi

)
qi, i = 1, 2 (39b)
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and

Ja = ω2 (a12q1q2 + a21q1q2) . (39c)

Using the appropriate Hamilton’s equations it is easy to verify that∫
Jβdt = Iβ (40a)

and ∫
Jψi

dt = Iψi
, i = 1, 2. (40b)

Equations (40a) and (40b) verify our conjecture. The matrix
(
aij

)
is antisymmetric.

Therefore a11 = a22 = 0 and a12 = −a21 . Thus for the two dimensional case under
consideration

(
aij

)
can not contain more than one independent element. In view

of this (39c) becomes identically equal to zero and (37c) gives

Ia = q1p2 − q2p1 for a12 = 1. (40c)

The special values of β(t) and ψi(t) can be obtained from

Jβ = 0 (41a)

and

Jψi
= 0. (41b)

Equations (41a) and (41b) give

β = 1 and β± = e±2iωt (42a)

and

ψ±
i = e±iωt , i = 1, 2. (42b)

The generators of the symmetry transformations leading to the conserved quanti-
ties in (37) can be obtained by using the values of ξ (t) and ηi(�q , t) from (28) and
(31) into (12). Thus we have

U = Uβ + Uψi
+ Ua, (43)

where

Uβ = β
∂

∂t
+ 1

2
q1β̇

∂

∂q1
+ 1

2
q2β̇

∂

∂q2
, (44a)

Uψi
= ψi

∂

∂qi

, i = 1, 2 (44b)
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and

Ua = q2
∂

∂q1
− q1

∂

∂q2
. (44c)

For β = 1, the invariant (37a) reduces to

Iβ=1 = H (= HS). (45a)

Understandably, (45a) represents the well known result that the instantaneous
system energy is given by H when the Hamiltonian does not depend on time
explicitly. The corresponding generator of the symmetry transformation from
(44a) is the time translation operator

Uβ=1 = ∂

∂t
. (46a)

For β = e+2iωt , the invariant Iβ gives rise to two real invariants

Iβ1 = ReIβ=e+2iωt = 1

2

(
p2

1 + p2
2 − ω2q2

1 − ω2q2
2

)
cos2ωt

+ω (q1p1 + q2p2) sin2ωt (45b)

and

Iβ2 = ImIβ=e+2iωt = 1

2

(
p2

1 + p2
2 − ω2q2

1 − ω2q2
2

)
sin2ωt

−ω (q1p1 + q2p2) cos2ωt. (45c)

The generators of Iβ1 and Iβ2 as found from (44a) are given by

Uβ1 = ReUβ=e+2iωt

= cos2ωt
∂

∂t
− ωq1 sin2ωt

∂

∂q1
− ωq2 sin2ωt

∂

∂q2
(46b)

and

Uβ2 = ImUβ=e+2iωt

= sin2ωt
∂

∂t
+ ωq1 cos2ωt

∂

∂q1
+ ωq2 cos2ωt

∂

∂q2
. (46c)

For β = e−2iωt , the results similar to those in (45b), (45c) and (46b), (46c)
read

Iβ3 = ReIβ=e−2iωt = Iβ1 , (45d)

Iβ4 = ImIβ=e−2iωt = −Iβ2 (45e)
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and

Uβ3 = ReUβ=e−2iωt = Uβ1 , (46d)

Uβ4 = ImUβ=e−2iωt = −Uβ2 . (46e)

From (37b), (42b) and (44b) we get the following invariants and generators.

I
1
1

= ReIψ1=e+iωt = −p1 cosωt − ωq1 sinωt, (45f)

I
2
1

= ImIψ1=e+iωt = −p1 sinωt + ωq1 cosωt, (45g)

U
1
1

= ReUψ1=e+iωt = cosωt
∂

∂q1
, (46f)

U
2
1

= ImUψ1=e+iωt = sinωt
∂

∂q1
, (46g)

I
3
1

= ReIψ1=e−iωt = I
1
1
, (45h)

I
4
1

= ImIψ1=e−iωt = −I
2
1
, (45i)

U
3
1

= ReUψ1=e−iωt = U
1
1
, (46h)

U
4
1

= ImUψ1=e−iωt = −U
2
1
, (46i)

I
1
2

= ReIψ2=e+iωt = −p2 cosωt − ωq2 sinωt, (45j)

I
2
2

= ImIψ2=e+iωt = −p2 sinωt + ωq2 cosωt, (45k)

U
1
2

= ReUψ2=e+iωt = cosωt
∂

∂q2
, (46j)

U
2
2

= ImUψ2=e+iωt = sinωt
∂

∂q2
, (46k)

I
3
2

= ReIψ2=e−iωt = I
1
2
, (45l)

I
4
2

= ImIψ2=e−iωt = −I
2
2
, (45m)

U
3
2

= ReUψ2=e−iωt = U
1
2

(46l)

and

U
4
2

= ImUψ2=e−iωt = −U
2
2
. (46m)
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Table I. Commutation Relations for the Generators in (47). Each element Gij in the Table Being
Represented by Gij = [Gi , Gj ]

G1 G2 G3 G4 G5 G6 G7 G8

G1 0 2ωG7 ωG4 ωG3 ωG6 ωG5 2ωG2 0
G2 −2ωG7 0 −ωG3 ωG4 −ωG5 ωG6 −2ωG1 0
G3 −ωG4 ωG3 0 0 0 0 ωG4 −G5

G4 −ωG3 −ωG4 0 0 0 0 −ωG3 −G6

G5 −ωG6 ωG5 0 0 0 0 ωG6 G3

G6 −ωG5 −ωG6 0 0 0 0 −ωG5 G4

G7 −2ωG2 2ωG1 −ωG4 ωG3 −ωG6 ωG5 0 0
G8 0 0 G5 G6 −G3 −G4 0 0

In the above the odd and even superscripts on β and ψi refer to real and imaginary
part of the invariants and the generators as the case may be. From (44c) and (46a)–
(46m) we find that there are only eight linearly independent group generators
given by

G1 = Uβ1 , G2 = Uβ2 , G3 = U
1
1

and G4 = U
2
1
. (47a)

G5 = U
1
2
, G6 = U
2

2
, G7 = Uβ=1and G8 = Ua. (47b)

We have already point out that G7 represents the generator of the symmetry
transformation that conserves the total energy of the system. We further note that
G8 is a generator that arises due to rotation in the (q1 , q2) plane. The system
is rotationally invariant and the corresponding conserved quantity is the angular
momentum given in (40c). For q2 = q1, equations in (2a) and (2b) reduce to the
equation for a single oscillator. In this case, the generators G5 and G6 coalesce
with G3 and G4 respectively. The generator G8 vanishes altogether. This leaves
us with only five linearly independent group generators of the one dimensional
Harmonic oscillator (Lutzky, 1978). The algebra of our eight parameter Lie group
is given in Table I.

To each of the one parameter subgroups in Table I there corresponds a constant
of the motion (Ci). More explicitly, we write

C1 = Iβ1 , C2 = Iβ2 , C3 = I
1
1

and C4 = I
2
1
. (48a)

C5 = I
1
2
, C6 = I
2

2
, C7 = Iβ=1 and C8 = Ia. (48b)

In (48), besides C8, the other conserved quantities that can be treated as indepen-
dent are C3, C4, C5 and C6. It is easy to show that

C1 = 1

2

(
C2

3 − C2
4

) + 1

2

(
C2

5 − C2
6

)
, (49a)

C2 = C3C4 + C5C6 (49b)
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and

C7 = 1

2

(
C2

3 + C2
4 + C2

5 + C2
6

)
. (49c)

Elimination of p1 between C3 and C4 yields

q1 = C4

ω
cosωt − C3

ω
sinωt. (50a)

Similarly, we have

q2 = C6

ω
cosωt − C5

ω
sinωt. (50b)

Since q1 and q2 represents the general solution of the uncoupled Harmonic oscil-
lators in (2a) and (2b), the system is completely specified by the four-parameter
Abelian symmetry group generated by G3, G4, G5 and G6. We have seen that
invariance of the system under G8 leads to the conservation of relative angular
momentum in (40c).

4.2. Alternative Representation

In the above we studied the Noether’s symmetries of the uncoupled Harmonic
oscillator by using the direct Lagrangian given in (3a). We shall now carry out
a similar analysis by taking recourse to the use of the alternative Lagrangian
in (3b) and examine in some detail how the association between symmetries and
conservation laws is affected as we go from direct representation to an inequivalent
one.

The Hamiltonian corresponding to the Lagrangian in (3b) is given by (4b).
Using this Hamiltonian in (24) we find that ξ (q1, q2, t) is not a function of q1 and
q2 such that it could again be represented by (28). The quantities ηi also formally
satisfy the equation in (31) with the exception that

(
aij

)
is now a traceless diagonal

matrix. This allows us to write the gauge function f in the form

f = 1

2
q1q2β̈ + ψ̇1q2 + ψ̇2q1. (51)

The invariant quantity I can again be represented by (36) but with Iβ , Iψi
and Ia

redefined as

Iβ = 1

2
q1q2β̈ − 1

2
(q1p1 + q2p2) β̇ + (

p1p2 + ω2q1q2
)
β, (52a)

Iψ1 = ψ̇1q2 − ψ1p1, (52b)

Iψ2 = ψ̇2q1 − ψ2p2 (52c)
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and

Ia = −a11q1p1 − a22q2p2. (52d)

As with our previous analysis each of the I ’s forms a separate constant with the
corresponding J ’s being given by

Jβ = 1

2
q1q2

( ...

β +4ω2β
)

, (53a)

Jψ1 = q2
(
ψ̈1 + ω2ψ1

)
, (53b)

Jψ2 = q1
(
ψ̈2 + ω2ψ2

)
(53c)

and

Ja = ω2 (a11q1q2 + a22q1q2) . (53d)

Since (aij ) is traceless (a11 = −a22), Ja is identically zero. If we choose a11 = 1,
we get

Ia = q2p2 − q1p1. (54)

The special values of β(t) and ψi(t) obtained from (41a) and (41b) are again given
by (42a) and (42b). Using these values we can construct eight linearly independent
group generators. Except for G8 all other Gi’s, i = 1, 2, . . . , 7, coincide with those
given in (47). The generator

G8 = q1
∂

∂q1
− q2

∂

∂q2
(55)

has the corresponding conserved quantity given in (54). Thus C8 = Ia and we
write

C8 = q2p2 − q1p1. (56)

As with (40c) we recognize (56) as the relative angular momentum. Since G8

is a squeezing operator, the conservation of angular momentum in the present
case results from invariance of the system under squeeze. Thus the alternative
Lagrangian representation brings in a point of contrast for the association of
symmetries and conservation laws with the corresponding result found by using a
direct analytic representation. For the direct representation, the angular momentum
conservation arises due to invariance of the system under rotation. Although
the results for Gi’s for i = 1, 2, . . . , 7 in both representations are equal, the
corresponding conserved quantities are different in form. The results for Ci’s read

C1 = (
p1p2 − ω2q1q2

)
cos2ωt + ω (q1p1 + q2p2) sin2ωt, (57a)

C2 = (
p1p2 − ω2q1q2

)
sin2ωt − ω (q1p1 + q2p2) cos2ωt, (57b)
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Table II. Commutation Relations for the Symmetry Generators of the Alternative Lagrangian
in (3b). As in Table I Each Element Gij = [Gi, Gj ]

G1 G2 G3 G4 G5 G6 G7 G8

G1 0 2ωG7 ωG4 ωG3 ωG6 ωG5 2ωG2 0
G2 −2ωG7 0 −ωG3 ωG4 −ωG5 ωG6 −2ωG1 0
G3 −ωG4 ωG3 0 0 0 0 ωG4 G3

G4 −ωG3 −ωG4 0 0 0 0 −ωG3 G4

G5 −ωG6 ωG5 0 0 0 0 ωG6 −G5

G6 −ωG5 −ωG6 0 0 0 0 −ωG5 −G6

G7 −2ωG2 2ωG1 −ωG4 ωG3 −ωG6 ωG5 0 0
G8 0 0 −G3 −G4 G5 G6 0 0

C3 = −p1 cosωt − ωq2 sinωt, (57c)

C4 = −p1 sinωt + ωq2 cosωt, (57d)

C5 = −p2 cosωt − ωq1 sinωt, (57e)

C6 = −p2 sinωt + ωq1 cosωt (57f)

and

C7 = p1p2 + ω2q1q2. (57g)

From (47b), (48b) and (57g) it is clear that the association of invariance under
time translation with the conservation of total energy is independent of the choice
for Lagrangian representation. We present in Table 2 the algebra of the eight
parameter Lie group for the alternative Lagrangian representation.

It is easy to see that in the appropriate limit the results given in Table 2 go
over to those for linear one dimensional Harmonic oscillator (Lutzky, 1978). The
solution of uncoupled oscillators can be obtained as

q1 = C6

ω
cosωt − C5

ω
sinωt. (58a)

Similarly, we have

q2 = C4

ω
cosωt − C3

ω
sinωt. (58b)

The conserved quantities C3, C4, C5, C6 are given in (57c)–(57f). Comparison

of (50) and (58) exhibits that matrices 1
ω

(
C3 C4

C5 C6
) and 1

ω
(
C5 C6

C3 C4
) operate on the

vector (
−sinωt

cosωt
) to give the solutions (

q1

q2
). The interchange of rows in these

square matrices merely reflects the difference in the association for Euler-Lagrange
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equations and equations of the motion for the direct and alternative Lagrangian
representations.

5. NOETHER SYMMETRIES OF COUPLED HARMONIC
OSCILLATORS

In (6) and (7) we have presented results for direct and alternative analytic
representations of the coupled Harmonic oscillators. Studies in the symmetry
properties of coupled oscillators have become an active branch of mathematics
with application in physics (Han et al., 1995). An oscillator with one type of
free vibration has a single natural frequency. On the other hand, two coupled
oscillators can exchange energies between them and vibrate in several ways leading
to multiple resonant frequencies often called the normal modes of the system. Thus
it will be an interesting curiosity to envisage a study on the symmetry analysis
of the coupled oscillators with a view to bring out the points of contrast and
of similarity between the results of the coupled system with the corresponding
results of the uncoupled one. As with our analysis for the uncoupled oscillators
we devote two separate subsections to present results for the association between
symmetries and conservation laws as obtained by the use of direct and inequivalent
Lagrangians.

5.1. Direct Representation

To carry out the symmetry analysis by using the direct representation we use
(7a) in (24) to get

∂f

∂t
+ p1

∂f

∂q1
+ p2

∂f

∂q2

+ 1

2

(
∂ξ

∂t
+ p1

∂ξ

∂q1
+ p2

∂ξ

∂q2

)

× (
p2

1 + p2
2 + ω2q2

1 + ω2q2
2 − 2αq1q2

)

−
(

∂η1

∂t
+ p1

∂η1

∂q1
+ p2

∂η1

∂q2

)
p1 + η1

(
ω2q1 − αq2

)

−
(

∂η2

∂t
+ p1

∂η2

∂q1
+ p2

∂η2

∂q2

)
p2 + η2

(
ω2q2 − αq1

) = 0. (59)

In the limit of no coupling (α = 0), the equation in (59) goes over to that in
(25). From (59) we can construct equations similar to those in (27). The coefficients
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of p0
i , p1 and p2 give

p0
1,2 :

∂f

∂t
+ ω2

2

(
q2

1 + q2
2

) ∂ξ

∂t
− 2αq1q2

∂ξ

∂t
+ ω2η1q1

+ ω2η2q2 − αη1q2 − αη2q1 = 0, (60a)

p1 :
∂f

∂q1
+ ω2

2

(
q2

1 + q2
2

) ∂ξ

∂q1
− αq1q2

∂ξ

∂q1
− ∂η1

∂t
= 0 (60b)

and

p2 :
∂f

∂q2
+ ω2

2

(
q2

1 + q2
2

) ∂ξ

∂q2
− αq1q2

∂ξ

∂q2
− ∂η2

∂t
= 0. (60c)

The other equations obtained from the coefficients of p2
1, . . . , p

3
2 are exactly the

same as those given in (27d)–(27j) and lead to (28) and (31). From (28) and (60)
we get

∂f

∂t
+ ω2

2

(
q2

1 + q2
2

)
β̇ − 2αq1q2β̇ + η1

(
ω2q1 − αq2

)

+η2
(
ω2q2 − αq1

) = 0, (61)

and two other equations which are exactly the same as those given in (33) and (34)
such that the value of f is once again given by (35).

We now use the values of H and f form (7a) and (35) in (22) to get the
invariant in the form (36). In this case

Iβ = 1

4

(
q2

1 + q2
2

)
β̈ − 1

2
(q1p1 + q2p2) β̇

+1

2

(
p2

1 + p2
2 + ω2q2

1 + ω2q2
2 − 2αq1q2

)
β. (62)

The results for Iψi
and Ia coincide with the the expressions in (37b) and (37c).

In close analogy with our treatment of the uncoupled Harmonic oscillators, it is
straightforward to see from (35) and (61) that each of Iβ , Iψ1 , Iψ2 and Ia forms
a separate constant. It is interesting to note that the effect of coupling on the
conserved quantity enters only through Iβ . From (41a) and (41b)

β = 1, β = e±2ω1t , β = e±2ω2t (63a)

and

ψ±
i = e±ω1t , ψ±

i = e±ω2t (63b)
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where ω1 = √
ω2 − α and ω2 = √

ω2 + α stand for the resonant frequencies of
the coupled oscillators. In the absence of interaction the values of β and ψi in (63)
go over to those in (42). For the values of β and ψi given in (63a) and (63b) we
have obtained following conserved quantities

C1 = ReIβ=e+2iω1 t

= 1

2

(
p2

1 + p2
2 − ω2q2

1 − ω2q2
2 − 2α

(
q1q2 − q2

1 − q2
2

))
cos2ω1t

+ω1 (q1p1 + q2p2) sin2ω1t, (64a)

C2 = ImIβ=e+2iω1 t

= 1

2

(
p2

1 + p2
2 − ω2q2

1 − ω2q2
2 − 2α

(
q1q2 − q2

1 − q2
2

))
sin2ω1t

−ω1 (q1p1 + q2p2) cos2ω1t, (64b)

C3 = ReIψ1=e+iω1 t = −p1 cosω1t − ω1q1 sinω1t, (64c)

C4 = ImIψ1=e+iω1 t = −p1 sinω1t + ω1q1 cosω1t, (64d)

C5 = ReIψ2=e+iω1 t = −p2 cosω1t − ω1q2 sinω1t, (64e)

C6 = ImIψ2=e+iω1 t = −p2 sinω1t + ω1q2 cosω1t. (64f)

C7 = Iβ=1 = 1

2

(
p2

1 + p2
2 + ω2q2

1 + ω2q2
2 − 2αq1q2

)
, (64g)

C8 = Ia = q1p2 − q2p1, (64h)

C9 = ReIβ=e+2iω2 t

= 1

2

(
p2

1 + p2
2 − ω2q2

1 − ω2q2
2 − 2α(q1q2 + q2

1 + q2
2 )

)
cos2ω2t

+ω2 (q1p1 + q2p2) sin2ω2t, (64i)

C10 = ImIβ=e+2iω2 t

= 1

2

(
p2

1 + p2
2 − ω2q2

1 − ω2q2
2 − 2α

(
q1q2 + q2

1 + q2
2

))
sin2ω2t
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−ω2 (q1p1 + q2p2) cos2ω2t, (64j)

C11 = ReIψ1=e+iω2 t = −p1 cosω2t − ω2q1 sinω2t, (64k)

C12 = ImIψ1=e+iω2 t = −p1 sinω2t + ω2q1 cosω2t, (64l)

C13 = ReIψ2=e+iω2 t = −p2 cosω2t − ω2q2 sinω2t (64m)

and

C14 = ImIψ2=e+iω2 t = −p2 sinω2t + ω2q2 cosω2t. (64n)

Fourteen linearly independent symmetry generators associated with the above
conserved quantities are given by

G1 = cos2ω1t
∂

∂t
− ω1q1 sin2ω1t

∂

∂q1
− ω!q2 sin2ω1t

∂

∂q2
, (65a)

G2 = sin2ω1t
∂

∂t
+ ω1q1 cos2ω1t

∂

∂q1
+ ω1q2 cos2ω1t

∂

∂q2
, (65b)

G3 = cosω1t
∂

∂q1
, (65c)

G4 = sinω1t
∂

∂q1
, (65d)

G5 = cosω1t
∂

∂q2
, (65e)

G6 = sinω1t
∂

∂q2
, (65f)

G7 = ∂

∂t
, (65g)

G8 = q2
∂

∂q1
− q1

∂

∂q2
, (65h)

G9 = cos2ω2t
∂

∂t
− ω2q1 sin2ω2t

∂

∂q1
− ω2q2 sin2ω2t

∂

∂q2
, (65i)
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G10 = sin2ω2t
∂

∂t
+ ω2q1 cos2ω2t

∂

∂q1
+ ω2q2 cos2ω2t

∂

∂q2
, (65j)

G11 = cosω2t
∂

∂q1
, (65k)

G12 = sinω2t
∂

∂q1
, (65l)

G13 = cosω2t
∂

∂q2
(65m)

and

G14 = sinω2t
∂

∂q2
. (65n)

As expected, in the limit of no coupling, we get from (64a)–(64n) only eight
linearly independent generators as given in (47). In this context, we also note that
the conserved quantity C7 represents the total energy of the coupled oscillators
and is associated with the time translation invariance of the system. The invariant
quantity C8 stands for the relative angular momentum. Since G8 represents a
rotation operator, here conservation of angular momentum arises due to rotational
invariance. The commutation relations for the generators of the coupled oscillators
are schematically shown in the Table III.

In this Table A(ω1) represents the entries in Table I with the last two rows
and columns being deleted. Also we have to use ω1 for ω. The square array of
commutators in A(ω2) carry a similar meaning. When the 2 × 2 null array is
appropriately included, the rectangular arrays B(ω1) and B(ω2) will stand for the
rows and columns which were deleted in writing A(ω1) and A(ω2). In contrast to
the commutators in A’s and B’s, the commutators in C depend on both ω1 and
ω2 and we have used C = C(ω1, ω2). Amongst the square array of commutators
contained in C(ω1, ω2) we have

[Gi,Gj ] = 0 for i = 3, . . . , 6, j = 11, . . . , 14. (66)

The other commutators, [Gi,Gj ], i = 1, 2, j = 9, . . . , 14 go over to the en-
tries in Table I for [Gi,Gj ], i = 1, 2, j = 1, . . . , 6. Similarly [Gi,Gj ], i =
3, . . . , 6, j = 9, 10 coincide with the commutators [Gi,Gj ], i = 3, . . . , 6, j =
1, 2 in Table I. This serves as a useful check on the symmetry analysis presented
for the coupled oscillators using the Hamiltonian of the direct representation.



1250 Talukdar, Choudhuri, and Das

Ta
bl

e
II

I.
C

om
m

ut
at

io
n

R
el

at
io

ns
fo

r
G

en
er

at
or

s
in

(6
5)

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
10

G
11

G
12

G
13

G
14

G
1

G
2

G
3

A
(ω

1
)

B
(ω

1
)

C
(ω

1
,
ω

2
)

G
4

G
5

G
6

G
7

−B
(ω

1
)

0
0

−B
(ω

2
)

G
8

0
0

G
9

G
10

G
11

−C
(ω

1
,
ω

2
)

B
(ω

2
)

A
(ω

2
)

G
12

G
13

G
14



Noether-Symmetry Analysis Using Alternative Lagrangian Representations 1251

5.2. Alternative Representation

Here we work with the Hamiltonian in (7b). For this Hamiltonian f , Iψ1 ,
Iψ2 and Ia come out exactly in the same form as given in (51), (52b), (52c) and
(52d) for the alternative representation of the uncoupled Harmonic oscillators. The
effect of the coupling enters only through Iβ written as

Iβ = 1

2
q1q2β̈ − 1

2
(q1p1 + q2p2) β̇

+
(
p1p2 + ω2q1q2 − α

2
(q2

1 + q2
2 )

)
β, (67)

with values of β given in (63a). For these β values we find the conserved quantities

C1 = ReIβ=e+2iω1 t

=
(
p1p2 − ω2q1q2 − α

2

(
q2

1 + q2
2 − 4q1q2

))
cos2ω1t

+ ω1 (q1p1 + q2p2) sin2ω1t, (68a)

C2 = ImIβ=e+2iω1 t

=
(
p1p2 − ω2q1q2 − α

2

(
q2

1 + q2
2 − 4q1q2

))
sin2ω1t

− ω1 (q1p1 + q2p2) cos2ω1t, (68b)

C7 = Iβ=1 = p1p2 + ω2q1q2 − α

2
(q2

1 + q2
2 ), (68c)

C9 = ReIβ=e+2iω2 t

=
(
p1p2 − ω2q1q2 − α

2

(
q2

1 + q2
2 + 4q1q2

))
cos2ω2t

+ ω2 (q1p1 + q2p2) sin2ω2t (68d)

and

C10 = ImIβ=e+2iω2 t

=
(
p1p2 − ω2q1q2 − α

2

(
q2

1 + q2
2 + 4q1q2

))
sin2ω2t

− ω2 (q1p1 + q2p2) cos2ω2t, (68e)
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with the corresponding generators given in (65a), (65b), (65g), (65i)and (65j),
respectively. In particular, G7 in (65g) is a time translation operator such that C7

represents the total energy of the system. Comparison of the results in (64g) and
(68c) clearly shows that the total energy of the system is expressed in different ways
for the direct and alternative phase-space representations. We have noted above that
(52d) remains invariant as we go from uncoupled to coupled representations. This
implies that we have again C8 = q2p2 − q1p1 as the relative angular momentum
of the coupled system. The corresponding generator is the squeezing operator
given in (55).

6. SUMMARY AND CONCLUDING REMARKS

Noether’s theorem provides a one-to-one correspondence between the sym-
metry properties and conserved quantities of a dynamical system. We have chosen
to work with a theoretical framework which attributes the reason for this to the
properties of some auxiliary equations which can always be written in the form of
a total time derivative. This realization for the auxiliary equations allowed us to
examine how the association between symmetries and conservation laws changes
as one alters the Lagrangian representation of the system.

We carried out the Noether or variational symmetry analysis for two uncou-
pled Harmonic oscillators as well as two such oscillators coupled by an interaction.
Each of these newtonian systems can be analytically represented by two different
Lagrangians which are not connected by a gauge term. These are the so-called
alternative Lagrangians. For brevity, we called one of the Lagrangians as direct
and the other as alternative. Irrespective of whether the representation is direct or
alternative, we found that there are eight conserved quantities for the uncoupled
harmonic oscillators. We also worked out the generators of the symmetry trans-
formations that lead to these conserved quantities and studied the associated Lie
algebra. This allowed us to construct the solution of the system. For the direct rep-
resentation we found that the conservation of total energy follows from invariance
of the system under time translation. This is also true for the alternative Lagrangian
representation. But so far as the conservation of angular momentum is concerned
the situation is quite different. For the direct representation the conservation of
angular momentum follows from rotational invariance while for the alternative
representation such a conservation is related with invariance of the system under
squeeze.

As opposed to the uncoupled system, the coupled oscillators are charac-
terized by fourteen invariant quantities. Referring to the conserved quantities in
(64), we see that, in the limit of no coupling, C1, C2, C3, C4, C5 and C6 coincide
with C9, C10, C11, C12, C13 and C14 respectively and finally, we are left with only
eight conserved quantities as given in (48). This comment made in the context of
direct analytic representation is equally true for the alternative representation. It
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is found that the interaction does not affect the association between symmetries
and conservation laws.
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